High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes (2024)

References

  1. Trahey, L. et al. Energy storage emerging: a perspective from the Joint Center for Energy Storage Research. Proc. Natl Acad. Sci. USA 1, 12550–12557 (2020).

    Article Google Scholar

  2. Lee, Y. G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article Google Scholar

  3. Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    Article Google Scholar

  4. Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020).

    Article Google Scholar

  5. Zhang, Z. et al. New horizon for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    Article Google Scholar

  6. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    Article Google Scholar

  7. Park, K. H. et al. Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018).

    Article Google Scholar

  8. Balaish, M. et al. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 6, 227–239 (2021).

    Article Google Scholar

  9. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article Google Scholar

  10. Kato, T. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article Google Scholar

  11. Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    Article Google Scholar

  12. Dewald, G. F. et al. Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chem. Mater. 31, 8328–8337 (2019).

    Article Google Scholar

  13. Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 19, 428–435 (2020).

    Article Google Scholar

  14. Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    Article Google Scholar

  15. Banerjee, A., Wang, X., Fang, C., Wu, E. A. & Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020).

    Article Google Scholar

  16. Xiao, Y., Miara, L. J., Wang, Y. & Ceder, G. Computational screening of cathode coatings for solid-state batteries. Joule 3, 1252–1275 (2019).

    Article Google Scholar

  17. Nolan, A. M., Liu, Y. & Mo, Y. Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries. ACS Energy Lett. 4, 2444–2451 (2019).

    Article Google Scholar

  18. Jung, S. H. et al. Li3BO3-Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries. Chem. Mater. 30, 8190–8200 (2018).

    Article Google Scholar

  19. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Article Google Scholar

  20. Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. Engl. 58, 8039–8043 (2019).

    Article Google Scholar

  21. Muy, S. et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16, 270–282 (2019).

    Article Google Scholar

  22. Li, X. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019).

    Article Google Scholar

  23. Park, K. H. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    Article Google Scholar

  24. Kim, S. Y. et al. Lithium ytterbium based halide solid electrolytes for high voltage all-solid-state batteries. ACS Mater. Lett. 3, 930–938 (2021).

    Article Google Scholar

  25. Liang, J. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. 142, 7012–7022 (2020).

    Article Google Scholar

  26. Zhou, L. et al. A new halospinel superionic conductor for high-voltage all solid state lithium batteries. Energy Environ. Sci. 13, 2056–2063 (2020).

    Article Google Scholar

  27. Kwak, H. et al. New cost-effective halide solid electrolytes for all-solid-state batteries: mechanochemically prepared Fe3+-substituted Li2ZrCl6. Adv. Energy Mater. 11, 2003190 (2021).

    Article Google Scholar

  28. Park, J. et al. Heat treatment protocol for modulating ionic conductivity via structural evolution of Li3−xYb1−xMxCl6 (M = Hf4+, Zr4+) new halide superionic conductors for all-solid-state batteries. Chem. Eng. J. 425, 130630 (2021).

    Article Google Scholar

  29. Kato, Y. et al. All-solid-state batteries with thick electrode configurations. J. Phys. Chem. Lett. 9, 607–613 (2018).

    Article Google Scholar

  30. Minnmann, P., Quillmann, L., Burkhardt, S., Richter, F. H. & Janek, J. Quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries. J. Electrochem. Soc. 168, 040357 (2021).

    Article Google Scholar

  31. Liu, H. et al. Elucidating the limit of Li insertion into the spinel Li4Ti5O12. ACS Mater. Lett. 1, 96–102 (2019).

    Article Google Scholar

  32. Zhang, W. et al. Kinetic pathways of ionic transport in fast-charging lithium titanate. Science 367, 1030–1034 (2020).

    Article Google Scholar

  33. Bohnsack, A. et al. Ternary halides of the A3MX6 type. Part VI. Ternary chlorides of the rare-earth elements with lithium, Li3MCl6 (M = Tb-Lu, Y, Sc): synthesis, crystal structures, and ionic motion. Z. Anorg. Allg. Chem. 623, 1067–1073 (1997).

    Article Google Scholar

  34. Zhou, L. et al. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019).

    Article Google Scholar

  35. Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article Google Scholar

  36. Shi, T. et al. High active material loading in all-solid-state battery electrode via particle size optimization. Adv. Energy Mater. 10, 1902881 (2019).

    Article Google Scholar

  37. Strauss, F. et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries. ACS Energy Lett. 3, 992–996 (2018).

    Article Google Scholar

  38. Han, F. et al. Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018).

    Article Google Scholar

  39. Kubanska, A., Castro, L., Tortet, L., Dollé, M. & Bouchet, R. Effect of composite electrode thickness on the electrochemical performance of all-solid-state Li-ion batteries. J. Electroceram. 38, 189–196 (2017).

    Article Google Scholar

  40. Amin, R. & Chiang, Y. M. Characterization of electronic and ionic transport in in Li1−xNi0.33Mn0.33Co0.33O2 (NMC333) and Li1−xNi0.50Mn0.20Co0.30O2 (NMC523) as a function of Li content. J. Electrochem. Soc. 163, A1512 (2016).

    Article Google Scholar

  41. Märker, K. et al. Evolution of structure and lithium dynamics in LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes during electrochemical cycling. Chem. Mater. 31, 2545–2554 (2019).

    Article Google Scholar

  42. Han, Y. et al. Single- or poly-crystalline Ni-rich layered cathode, sulfide or halide solid electrolyte: which will be the winner for all-solid-state batteries? Adv. Energy Mater. 11, 2100126 (2021).

    Article Google Scholar

  43. Walther, F. et al. The working principle of a Li2CO3/LiNbO3 coating on NCM for thiophosphate-based all-solid-state batteries. Chem. Mater. 33, 2110–2125 (2021).

    Article Google Scholar

  44. Ohta, N. et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries. Electrochem. Commun. 9, 1486–1490 (2007).

    Article Google Scholar

  45. Glass, A. M., Nassau, K. & Negran, T. J. Ionic conductivity of quenched alkali niobate and tantalate glasses. J. Appl. Phys. 49, 4808 (1978).

    Article Google Scholar

  46. Strauss, F. et al. Li2ZrO3-coated NMC622 for application in inorganic solid-state batteries: role of surface carbonates in the cycling performance. ACS Appl. Mater. Interfaces 12, 557146–557154 (2020).

    Article Google Scholar

  47. Banerjee, A. et al. Revealing nanoscale solid–solid interfacial phenomena for long-life and high-energy all-solid-state batteries. ACS Appl. Mater. Interfaces 11, 443138–43135 (2019).

    Article Google Scholar

  48. Zhang, Y. Q. et al. Direct visualization of the interfacial degradation of cathode coating in solid state batteries: a combined experimental and computational study. Adv. Energy Mater. 10, 1903778 (2020).

    Article Google Scholar

  49. Nakamura, T. et al. Guidelines for all-solid-state battery design and electrode buffer layers based on chemical potential profile calculation. ACS Appl. Mater. Interfaces 11, 19968–19976 (2019).

    Article Google Scholar

  50. Koerver, R. et al. Chemo-mechanical expansion of lithium electrode materials—on the route to mechanically optimized all-solid-state batteries. Energy Environ. Sci. 11, 2142–2158 (2018).

    Article Google Scholar

Download references

High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes (2024)

References

Top Articles
Latest Posts
Article information

Author: Margart Wisoky

Last Updated:

Views: 6182

Rating: 4.8 / 5 (58 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Margart Wisoky

Birthday: 1993-05-13

Address: 2113 Abernathy Knoll, New Tamerafurt, CT 66893-2169

Phone: +25815234346805

Job: Central Developer

Hobby: Machining, Pottery, Rafting, Cosplaying, Jogging, Taekwondo, Scouting

Introduction: My name is Margart Wisoky, I am a gorgeous, shiny, successful, beautiful, adventurous, excited, pleasant person who loves writing and wants to share my knowledge and understanding with you.